Barycentric Lagrange Interpolation As discussed by Jean-Paul Berrut and Lloyd N. Trefethen (2004)

نویسنده

  • Maximilian Jentzsch
چکیده

This text discusses barycentric Lagrange interpolation based on the SIAM REVIEW article of Jean-Paul Berrut and Lloyd N. Trefethen [1]. It also offers additional background information, as well as some MATLAB demonstrations. Interpolation Given a set Dn of n + 1 nodes x j with corresponding values f j where j = 0, . . . ,n, we aim to construct the polynomial that satisfies p(x j) = f j j = 0, . . . ,n i.e. the polynomial interpolates Dn. Note that the f j do not necessarily have to correspond to a function. Theorem 1. There exists a unique polynomial pn(x) = p01...n(x) of degree less than or equal to n interpolating Dn [3] There are many different kinds of interpolation; here we focus on Lagrange interpolation. Lagrange interpolation This data set can be interpolated by the Lagrange form of the interpolation polynomial [3], p01...n(x) = n ∑ j=0 l j(x) f (x j), where (0.1) l j(x) = ∏k=0,k 6= j(x− xk) ∏k=0,k 6= j(x j− xk) , (0.2) also called the Lagrangian cardinal functions [3]. These satisfy, ∀i, j = 0,1 . . .n: li(x j) = δi j = { 0 i f i 6= j 1 i f i = j p01...n(xi) = fi

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barycentric Lagrange Interpolation

Barycentric interpolation is a variant of Lagrange polynomial interpolation that is fast and stable. It deserves to be known as the standard method of polynomial interpolation.

متن کامل

The numerical stability of barycentric Lagrange interpolation

The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...

متن کامل

Stability of Barycentric Interpolation Formulas for Extrapolation

The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...

متن کامل

Stability of Barycentric Interpolation Formulas

The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...

متن کامل

Recent advances in linear barycentric rational interpolation

Well-conditioned, stable and infinitely smooth interpolation in arbitrary nodes is by no means a trivial task, even in the univariate setting considered here; already the most important case, equispaced points, is not obvious. Certain approaches have nevertheless experienced significant developments in the last decades. In this paper we review one of them, linear barycentric rational interpolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014